Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis.

نویسندگان

  • Gwendolyn E Wood
  • Andrew K Haydock
  • John A Leigh
چکیده

Methanococcus maripaludis is a mesophilic species of Archaea capable of producing methane from two substrates: hydrogen plus carbon dioxide and formate. To study the latter, we identified the formate dehydrogenase genes of M. maripaludis and found that the genome contains two gene clusters important for formate utilization. Phylogenetic analysis suggested that the two formate dehydrogenase gene sets arose from duplication events within the methanococcal lineage. The first gene cluster encodes homologs of formate dehydrogenase alpha (FdhA) and beta (FdhB) subunits and a putative formate transporter (FdhC) as well as a carbonic anhydrase analog. The second gene cluster encodes only FdhA and FdhB homologs. Mutants lacking either fdhA gene exhibited a partial growth defect on formate, whereas a double mutant was completely unable to grow on formate as a sole methanogenic substrate. Investigation of fdh gene expression revealed that transcription of both gene clusters is controlled by the presence of H(2) and not by the presence of formate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Function and regulation of glnA in the methanogenic archaeon Methanococcus maripaludis.

The glnA gene in the domains Bacteria and Archaea encodes glutamine synthetase, a universally distributed enzyme that functions in ammonia assimilation and glutamine synthesis. We investigated the regulation and function of glnA in the methanogenic archaeon Methanococcus maripaludis. The deduced amino acid sequence of the gene demonstrated its membership in class GSI-alpha of glutamine syntheta...

متن کامل

Inactivation of the selB gene in Methanococcus maripaludis: effect on synthesis of selenoproteins and their sulfur-containing homologs.

The genome of Methanococcus maripaludis harbors genes for at least six selenocysteine-containing proteins and also for homologs that contain a cysteine codon in the position of the UGA selenocysteine codon. To investigate the synthesis and function of both the Se and the S forms, a mutant with an inactivated selB gene was constructed and analyzed. The mutant was unable to synthesize any of the ...

متن کامل

Impact of translational selection on codon usage bias in the archaeon Methanococcus maripaludis.

Patterns of codon usage have been extensively studied among Bacteria and Eukaryotes, but there has been little investigation of species from the third domain of life, the Archaea. Here, we examine the nature of codon usage bias in a methanogenic archaeon, Methanococcus maripaludis. Genome-wide patterns of codon usage are dominated by a strong A + T bias, presumably largely reflecting mutation p...

متن کامل

H2-Independent Growth of the Hydrogenotrophic Methanogen Methanococcus maripaludis

UNLABELLED Hydrogenotrophic methanogenic Archaea require reduced ferredoxin as an anaplerotic source of electrons for methanogenesis. H(2) oxidation by the hydrogenase Eha provides these electrons, consistent with an H(2) requirement for growth. Here we report the identification of alternative pathways of ferredoxin reduction in Methanococcus maripaludis that operate independently of Eha to sti...

متن کامل

Diverse homologues of the archaeal repressor NrpR function similarly in nitrogen regulation.

NrpR is a transcriptional repressor of nitrogen assimilation genes that was recently discovered and characterized in the methanogenic archaeon Methanococcus maripaludis. NrpR homologues are widely distributed in Euryarchaeota and present in a few bacterial species. They exist in three different domain configurations: a single ORF encoding one NrpR domain following an N-terminal helix-turn-helix...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 185 8  شماره 

صفحات  -

تاریخ انتشار 2003